Does an elevated troponin ultimately matter? An assessment of outcomes in patients presenting to the emergency department with non-cardiac complaints

Kaitlin Endres BSc1, Yeung Yam BSc2, Benjamin Chow MD1,2 & Habibat Garuba MD1,2
1Faculty of Medicine, University of Ottawa
2Division of Cardiology and Nuclear Medicine, University of Ottawa Heart Institute, The Ottawa Hospital
3Division of Cardiology, University of Ottawa Heart Institute, The Ottawa Hospital

ABSTRACT

Background: Acute coronary syndrome (ACS) is one of the most time-sensitive diagnoses made in the emergency department (ED). Troponin (TNI) measurement is an invaluable tool; however, its utility is often limited by the clinical context and is false positive in the setting where there is a strong pre-test probability. Studies show that most TNI elevations are due to non-cardiovascular causes, however, elevated TNI has been associated with increased morbidity and mortality, often prompting additional investigations.

Objective: The purpose of our study was to evaluate patients who presented to the ED with non-cardiac complaints but elevated TNI and to investigate if there was any difference in one-year outcomes (cardiovascular, ST elevation myocardial infarction (STEMI), non-STEMI, stroke or transient ischemic attack (TIA)), revascularization, hospitalization for cardiac cause or death) between those who underwent cardiac evaluation (consultation and/or testing) and those who did not.

Methods: We conducted a retrospective chart review of patients ≥18 assessed in the ED for non-cardiac complaints with a high TNI from January 1, 2016 to June 30, 2016. In total, 1499 patients were analyzed and stratified into three groups: Group 1) patients with no further evaluation for ischemia or cardiology consultation (n=513), Group 2) patients where only consultation was requested (n=81) and Group 3) patients who underwent further cardiac evaluation (consultation and/or testing) and those who did not. Overall, i)

HYPOTHESES

1. Unrestricted or indiscriminate ordering of cardiac troponin levels in the ED for non-cardiac presenting complaints leads to further unnecessary investigation.

2. Restricting the ordering of troponin for non-cardiac complaints to physicians in the ED rather than automatically at triage would reduce further unnecessary investigation.

RESULTS

・Methodology is summarized in Figure 1 to the left.

・We conducted a retrospective chart review for patients ≥18 seen in the ED with an elevated initial troponin from January 1 - June 30, 2016.

・Elevated or positive troponin was defined as Troponin I of >0.045ug/L.

・Patients presenting with cardiac complaints including chest pain, palpitations, syncope, shortness of breath or cardiac arrest were excluded.

・Patients without cardiac complaints were stratified into 3 groups:
 1) patients who had no further work-up for their elevated troponin and
 2) patients who underwent cardiology consultation only (inpatient or outpatient). These were further divided into 3 subgroups:
 Group 1: no further diagnostic testing for ischemia or cardiac disease
 Group 2: cardiology consultation only
 Group 3: further diagnostic testing for ischemia or cardiac disease

・No further work-up for cardiac disease

・Data was collected on major adverse cardiac events within 1-year of follow up.

DISCUSSION

・Overall, in patients with isolated elevated TNI and non-cardiac complaints, our data showed no difference in mortality or cardiac event rates between those who had further testing and/or cardiac consultations and those who did not.

・TNI ordering could be cautiously limited to patients who had further testing and/or cardiac consultations and those who did not.

METHODS

OBJECTIVE

To assess the outcomes of patients with non-cardiac presentations who have elevated troponin levels in the ED.

RESULTS

Table 1. Comparison of Cardiac Outcomes

<table>
<thead>
<tr>
<th>Cardiac Outcomes</th>
<th>No further diagnostic testing (N=1,552)</th>
<th>Cardiology consultation only (N=153)</th>
<th>Further diagnostic testing (N=297)</th>
<th>P-value of proportions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstable Angina</td>
<td>2.0 (0.2%)</td>
<td>1.0 (0.3%)</td>
<td>0.0 (0.0%)</td>
<td>0.776</td>
</tr>
<tr>
<td>STEMI</td>
<td>11.1 (0.7%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0.325</td>
</tr>
<tr>
<td>NSTEMI</td>
<td>15.3 (1.5%)</td>
<td>2.0 (0.3%)</td>
<td>0 (0.0%)</td>
<td>0.869</td>
</tr>
<tr>
<td>Stroke/TIA</td>
<td>16 (1.4%)</td>
<td>4 (0.5%)</td>
<td>0 (0.0%)</td>
<td>0.560</td>
</tr>
<tr>
<td>Revascularization</td>
<td>11 (0.7%)</td>
<td>2.0 (0.3%)</td>
<td>0 (0.0%)</td>
<td>0.171</td>
</tr>
<tr>
<td>Cardiac Hospitalization</td>
<td>20 (1.3%)</td>
<td>1.2 (0.2%)</td>
<td>0 (0.0%)</td>
<td>0.476</td>
</tr>
<tr>
<td>Death</td>
<td>241 (12.3%)</td>
<td>10 (13.2%)</td>
<td>59 (20.0%)</td>
<td>0.157</td>
</tr>
</tbody>
</table>

REFERENCES

2. Worrall, Andrew D. "Cardiac biomarkers: clinical implications and cost of care comparison with other cardiac tests in the evaluation of patients with suspected acute coronary syndrome." Journal of Cardiac Failure 11 (2005): 253–263.